Study on Temper Embrittlement and Hydrogen Embrittlement of a Hydrogenation Reactor by Small Punch Test

نویسندگان

  • Kaishu Guan
  • Jerzy A. Szpunar
  • Karel Matocha
  • Duwei Wang
چکیده

The study on temper embrittlement and hydrogen embrittlement of a test block from a 3Cr1Mo1/4V hydrogenation reactor after ten years of service was carried out by small punch test (SPT) at different temperatures. The SPT fracture energy Esp (derived from integrating the load-displacement curve) divided by the maximum load (Fm) of SPT was used to fit the Esp/Fm versus-temperature curve to determine the energy transition temperature (Tsp) which corresponded to the ductile-brittle transition temperature of the Charpy impact test. The results indicated that the ratio of Esp/Fm could better represent the energy of transition in SPT compared with Esp. The ductile-to-brittle transition temperature of the four different types of materials was measured using the hydrogen charging test by SPT. These four types of materials included the base metal and the weld metal in the as-received state, and the base metal and the weld metal in the de-embrittled state. The results showed that there was a degree of temper embrittlement in the base metal and the weld metal after ten years of service at 390 °C. The specimens became slightly more brittle but this was not obvious after hydrogen charging. Because the toughness of the material of the hydrogenation reactor was very good, the flat samples of SPT could not characterize the energy transition temperature within the liquid nitrogen temperature. Additionally, there was no synergetic effect of temper embrittlement and hydrogen embrittlement found in 3Cr1Mo1/4V steel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies of Radiation Embrittlement of Model Alloys by Thermoelectric Measurements and Positron Annihilation Spectroscopy

One of the basic mechanisms of radiation embrittlement of steels and welds is due to matrix damage. Embrittlement results in a raise in the ductile-to-brittle transition temperature, which is normally used as indicator of the degradation status of the material. Other methods different than mechanical tests can be used to follow embrittlement like small punch test, non-destructive measurements o...

متن کامل

On the Step Cooling Treatment for the Assessment of Temper Embrittlement Susceptibility of Heavy Forgings in Superclean Steels

When subjected to extended exposure to intermediate service temperatures, Cr–Mo steels, Ni–Cr steels, and 5% Ni steels can become embrittled, with an associated decrease in fracture toughness and a shift in the ductile-to-brittle transition temperature to higher temperatures. Two methods for the investigation of temper embrittlement phenomena are isothermal aging or the use of a step cooling ag...

متن کامل

Radiation Embrittlement Prediction Models and The Impact of Irradiation Temperature

A new methodology is developed for the prediction of RPV embrittlement that utilizes a combination of domain models and nonlinear estimators including neural networks and nearest neighbor regressions. The Power Reactor Embrittlement Database is used in this study. The results from newly developed nearest neighbor projective fuser indicate that the combined embrittlement predictor achieved about...

متن کامل

Effects of tungsten on the hydrogen embrittlement behaviour of microalloyed steels

The effects of tungsten (W) additions (0, 0.1, 0.5 and 1 wt.%) on the hydrogen embrittlement behaviour of microalloyed steels were systematically investigated by means of slow strain rate tests on circumferentially notched cylindrical specimens, and the mechanism of hydrogen-induced embrittlement was discussed. W addition is found to increase the activation energy of hydrogen desorption. Micros...

متن کامل

Hydrogen embrittlement of grain boundaries in nickel: an atomistic study

The chemomechanical degradation of metals by hydrogen is widely observed, but not clearly understood at the atomic scale. Here we report an atomistic study of hydrogen embrittlement of grain boundaries in nickel. All the possible interstitial hydrogen sites at a given grain boundary are identified by a powerful geometrical approach of division of grain boundary via polyhedral packing units of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017